Hybrid Particle Swarm Optimisation Algorithms Based on Differential Evolution and Local Search
نویسندگان
چکیده
Particle Swarm Optimisation (PSO) is an intelligent search method based on swarm intelligence and has been widely used in many fields. However it is also easily trapped in local optima. In this paper, we propose two hybrid PSO algorithms: one uses a Differential Evolution (DE) operator to replace the standard PSO method for updating a particle’s position; and the other integrates both the DE operator and a simple local search. Seven benchmark multi-modal, high-dimensional functions are used to test the performance of the proposed methods. The results demonstrate that both algorithms perform well in quickly finding global solutions which other hybrid PSO algorithms are unable to find.
منابع مشابه
Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملFree Search in Tracking Time Dependent Optima
The article presents an adaptive method, called Free Search. It implements ideas different from other evolutionary algorithms such as Genetic Algorithms, Particle Swarm Optimisation, Differential Evolution and Ant Colony Optimisation. Free Search is based on original concepts for individual intelligence and independence of the population members. It is applied to optimisation of time dependent ...
متن کاملInformation Sharing Impact of Stochastic Diffusion Search on Population-Based Algorithms Mohammad Majid Oudah al-Rifaie – [scale=0.1]0homemDropboxGoldReportLyxThesisLogo.png– Thesis submitted for the degree of Doctor of Philosophy of the University of London Department of Computing, Goldsmiths College January 2012
This work introduces a generalised hybridisation strategy which utilises the information sharing mechanism deployed in Stochastic Di usion Search when applied to a number of population-based algorithms, e ectively merging this nature-inspired algorithm with some population-based algorithms. The results reported herein demonstrate that the hybrid algorithm, exploiting information-sharing within ...
متن کاملDiversified Particle Swarm Optimization for Hybrid Flowshop Scheduling
The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...
متن کامل